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Abstract—Crack opening interferometry is a standard technique used to measure the normal
opening displacement profile of a crack in a transparent material. This paper calculates how much
an incident light ray deflects from a nominally straight line path due to strain induced changes in
the index of refraction.

It is shown that an incident plane wavefront of light that propagates toward a plane strain
crack is split into two linearly polarized light rays : one polarized in a direction parallel to the crack
front ; the other polarized in the plane perpendicular to the crack front.

Assuming linear, elastic mechanical behavior and linear optical behavior in a homogeneous,
isotropic medium, the index of refraction of both wavefronts is derived for a Mode I crack in the
K-field region. In general, the index of refraction is anisotropic and inhomogeneous. Four new
material parameters are identified which characterize crack opening interferometry; values are
tabulated for three materials.

Using geometrical optics, the paths of both light rays are calculated analytically for a special
set of initial conditions and an expression for the total light deflection at the crack flank is obtained.

The results show that for some materials and specimen geometries, the absolute deflection of
each light ray is large enough to be measured, but the relative deflection (i.e. the difference in
deflection between the two light rays) is too small to be measured. The main effect that this
phenomenon has on crack opening interferometry is to cause a shift in the apparent position of the
crack tip. It is shown that this shift will not affect the interpretation of the interference fringes in
terms of crack opening displacement. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Crack opening interferometry is a standard technique (Liechti, 1993) used to measure the
normal opening displacement profile of a crack in a transparent material or of a crack
along the interface of a bimaterial system that has at least one transparent component. The
technique, as illustrated in Fig. 1, consists of shining a light through the transparent material
to the crack flanks. Light reflecting from both flanks interferes to form a set of interference
fringes. The difference in optical path length of the two wavefronts of light depends on the
distance between the crack flanks. Therefore, the results can be interpreted in terms of
normal crack opening displacement. In the present study, the incoming light wavefront is
assumed to be normal to the crack flanks in the unstrained configuration.

The index of refraction is a function of the strain state, however, so complications
arise when light passes through the region of stress and strain concentration around the
crack tip. This causes the incident light to deviate from a straight line path.

Fowlkes (1975) analyzed the path of incident light in the vicinity of a crack tip in cast
acrylic assuming the Mode I singular elastic field and concluded that the light ray does
significantly deflect from a straight line path. (A significant deflection, here, is defined as
one large enough to be measured by an optical instrument with a spatial resolution of
approximately 1x107° m.) A similar analysis (Liang and Liechti, 1995) predicted that,
under the same Mode I loading and stress intensity factor, the light path in the vicinity of
a crack in BK-7 glass does not deflect significantly. Both studies used the same approximate,
empirical relationship between applied load and index of refraction. The analyses differed
only in the material properties used in the numerical simulations.
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Fig. 1. Schematic of crack opening interferometry.

The goal of this paper is to analyze the behavior of incident light as it traverses a
transparent medium leading up to the crack flanks and to calculate, both analytically and
numerically, the path of the light near a crack tip under Mode I loading. It is assumed that
the medium is mechanically isotropic and homogeneous and is optically isotropic and
homogeneous in its unstrained state.

Section 2 reviews the well-established behavior of light in both naturally and mech-
anically birefringent solids. A general conclusion is that two wavefronts of light can propa-
gate independently along any given direction of an optically anisotropic medium. Further,
for each individual wave front, the direction of wavefront propagation and the direction of
energy flow (i.e. the light ray direction) associated with the wavefront do not, in general,
coincide. Also, a material that is optically isotropic can become anisotropic if it is
mechanically deformed.

In Section 3, the general features of light propagation in the near tip region of a plane
strain crack are identified. It is shown that if one assumes plane strain conditions, a wave
front of light is, in general, split into two linearly polarized wavefronts: one polarized
parallel to the crack front; the other polarized in a plane perpendicular to the crack front.
In addition, it is shown that the index of refraction of the wavefront polarized parallel to
the crack front is a function, only, of position. However, the index of refraction of the
wavefront polarized in a plane perpendicular to the crack front is a function of both
position and direction of propagation. Hence, in general, the calculation of the light path
reduces to that of electromagnetic wave propagation in an anisotropic, inhomogeneous
medium.

In Section 4, the index of refraction as a function of applied load is derived for each
wavefront assuming linear optical theory and the singular Mode I strain field of linear,
isotropic elasticity. Four new material parameters are identified which characterize crack
opening interferometry ; values of the parameters are tabulated for three commonly used
materials.

Section 5 reviews the general equations of geometrical optics which govern the propa-
gation of electromagnetic waves in an anisotropic, inhomogeneous medium in the limit of
vanishing wavelength and shows that the direction and speed of wavefront propagation is
governed by the index of refraction. This complicates the problem conceptually because
the goal of this paper is to calculate the path of the light ray, but the index of refraction
determines the direction of wavefront propagation and not of the light ray. However, the
governing equations can be written in terms of a characteristic set of ordinary differential
equations that provides the link between the direction of ray propagation and the direction
of wavefront propagation.

In Section 6, the problem is formulated and solved analytically for the special case of
a light wavefront that would, in an unloaded state, approach the crack in the direction
perpendicular to the crack flanks and strike the crack tip. An analytic expression which
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gives the total light deflection of both light rays at the crack tip is obtained in terms of the
newly identified material parameters. In addition, the problem is solved numerically to
investigate the behavior of light rays with other initial conditions.

Section 7 discusses the implications of these results on crack opening interferometry.
First, it is important to note that the two light rays deflect different amounts. If the difference
in deflection of the two light rays is large enough to be measured, in principle, one could
directly obtain the value of the Mode I stress intensity factor without the need to measure
the normal crack opening displacement. A drawback, though, is that an observer would
record a double image of the fringes which could lead to erroneous normal crack opening
displacement results. It is shown that for the materials and geometries considered in this
paper, the effect is too small to be measured.

Section 8 summarizes the results.

2. BEHAVIOR OF LIGHT IN AN OPTICALLY ANISOTROPIC MEDIUM

The theory of light propagating in an anisotropic, homogeneous medium is well
developed. This section will review the concepts necessary to understand the developments
of this paper. The interested reader can fine a complete derivation starting from Maxwell’s
equations in Born and Wolf (1993).

If one assumes that light is propagating through a nen-magnetic, transparent (implies
negligible specific conductivity), medium that has no electric charge density, the only non-
zero quantities that enter into Maxwell’s equations are : D, the electric displacement vector ;
B, the magnetic induction vector ; E, the electric vector; and H, the magnetic vector. If the
medium is linear, the constitutive relations between these quantities are

B = ,U(;H
D=¢¢E (1)
where

{ i, = magnetic permeability of free space)
(g, = dielectric permittivity of free space)

{ & = relative dielectric permittivity.

The magnetic permeability is isotropic and that of free space because the material
is non-magnetic. The anisotropy enters the equations through the relative dielectric
permittivity.

1t is convenient to define the slowness vector, p, of the wavefront as p = nm, where:
n = ¢/v is the index of refraction of wavefront; ¢ = 1/gg, is speed of light in free space; v
is the speed of wavefront of light in the anisotropic medium ; and m is the unit vector in the
direction of propagation.

For an arbitrary direction of propagation, Maxwell’s equations predict two separate
wave speeds. This implies that two independent, linearly polarized wavefronts can propagate
in any given direction. Such a “double refracting” medium is said to be birefringent. The
principal values of  determine the two possible wave speeds. As an example, if we choose
position coordinates that coincide with the principle axes of ¢ and a wavefront that
propagates in the m = (0,0, 1) direction, the magnitudes of the two possible slowness
vectors (i.e. the two possible indices of refraction) are (p), =n = \/;
and (p), = ny = /2.

Maxwell’s equations show that D is transverse to the direction, m, of wavefront
propagation and that the principal axes of ¢ determine the planes of polarization (i.e. the
directions of D). In this example, the wavefront with index of refraction », is polarized in
the x;—x, plane. The wavefront with index of refraction n, is polarized in the x,—x; plane.
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Fig. 2. Index ellipsoid.

If the direction of propagation is oblique to a principal direction of ¢, a geometrical
construction called the index ellipsoid can be used to calculate the two indices of refraction
and planes of polarization. Using the same principal axis position coordinates, we define
the principal refractive indices, n,, as

~ 1
n, = \/s—m =JB (x = 1,2, 3), no summation )

o

where

B =7%""' = relative dielectric impermeability.

Note that, by convention, Band B are denoted by the same letter ; the meaning should
be clear from context. The index ellipsoid is then defined as

xi x3 A
4=+ 2= 3)

ni m Nl

As demonstrated schematically in Fig. 2, one can find the indices of refraction and the
planes of polarization associated with a given direction of propagation by forming the
elliptical cross-section of the index ellipsoid that is parallel to the light wavefront and passes
through the center of the index ellipsoid. The lengths of the semi-axes of the elliptical
cross-section are equal to the indices of refraction, and the directions indicate those of
polarization.

The shape of the index ellipsoid must contain the same symmetry elements as the
crystalline structure of the medium (Nye, 1972). As a result, the optical properties are
classified as being anaxial, uniaxial, or biaxial depending upon whether, respectively, all,
two, or none of the principal refractive indices are equivalent. In an optically anaxial
medium, the index ellipsoid reduces to a sphere; such a medium is said to be optically
isotropic.

Another general feature of wave propagation in anisotropic media is that the light ray
(i.e. the electromagnetic energy associated with a wavefront) does not, in general, propagate
in the same direction as the wavefront. The electromagnetic energy flows in the direction
of the Poynting vector defined as S = E x H. From Maxwell’s equations we can see that H
is perpendicular to m and to D, whereas E lies in the plane of m and D, so that S is also in
the plane of m and D. In isotropic media, the direction of wavefront propagation coincides
with the direction of the light ray. In anisotropic media, one must be careful to distinguish
between the path of a wavefront of light and the path of a light ray.

An optically isotropic material can become anisotropic if it is strained. The relationship
between the relative dielectric impermeability tensor and strain tensor is expressed in
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terms of the 4th order elasto-optic tensor, p,,. The conventional way of quantifying this
relationship (Nye, 1972) is, for an optically and mechanically isotropic material

[AB, ) (P P2 P2 00 07 (&)

AB, Pi2 Pui P2 0 0 0 53

AB; _ P2 Pz P 0 0 O &3 @)
AB, 0 0 0O p 0 0] |&

AB; 0 p 0] |e&s

L ABg | | 0 0 0 0 0 pJ (e

where
AB, = change in relative dielectric impermeability tensor

{p11, P12, = elasto-optical coefficients)

1
<P = E(pll —P12)>

{e, = elastic strain).

Again, there is a potential for confusion from the notation. It is conventional to denote
both the relative dielectric impermeability tensor and strain tensor as & ; the meaning should
be clear from the context. The elasto-optic coefficients are of order O(10™") and are
dimensionless. Nye (1972) discusses how the tensor and matrix forms are interchanged.

After finding the principal values and directions of B, the approximate change in
principal indices of refraction can be found by differentiating (2) to yield
An, ~ —(n?)’ AB,/2 (2« = 1, 2, 3 corresponding to principal values), where An, is the change
in principal index of refraction and »? is the unstrained principal index of refraction. The
principal indices of refraction are then n, = n® + An,.

At this point we should note one assumption that has been made implicitly. Strictly
speaking, the index of refraction is a function of the displacement gradient tensor, rather
than the strain tensor (Giinter and Zgonik, 1991). This becomes evident if one realizes that
the orientation of the index ellipsoid is determined by the underlying crystal structure. Since
the rotation field associated with the anti-symmetric part of the displacement gradient causes
the crystal structure to rotate, the index ellipsoid also rotates relative to its undeformed state.
The effects of the strain field on the index ellipsoid must be calculated in this “rotated”
state.

However, if the medium is optically and mechanically isotropic in the undeformed
state, both the unstrained B tensor and the Dyu tensor are invariant to rotation and (4)
suffices to calculate the change of index of refraction.

3. LIGHT PROPAGATION IN NEAR CRACK TIP REGION

The index ellipsoid determines both the plane of polarization as well as the index of
refraction of each wavefront of light. Therefore, one can determine the general properties
of light propagating in the near crack tip region by finding the orientation of the relative
dielectric impermeability tensor (and hence, the index ellipsoid) relative to the crack.

To that end, we assume that a semi-infinite plane strain crack exists in a mechanically
and optically isotropic medium and that the system is loaded by some combination of
Mode I and Mode II. Figure 3 shows the cross-section of the index ellipsoid in the x,—x,
plane. The crack front coincides with the x;-axis. The angle w specifies the direction of the
wavefront normal of light propagating in the x)—x, plane. The position of the wavefront
normal is specified by r and 6. -

The only non-zero strains are &,;, €, €&, # 0, so from (4), B will change only in AB,,
AB,, AB;, and ABq. Since an off-diagonal term exists, the principal axes of the index ellipsoid
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Fig. 3. Index ellipsoid relative to plane strain crack.

are not parallel to the coordinate axes. The ABy term causes the principal axes of the index
ellipsoid to be rotated in the x,—x, plane, with one principal axis of the index ellipsoid
parallel to the x;-axis. As shown in Fig. 3, we assign the principal indices of refraction n,
and », to be in the x,—x, plane and the other, n,, to be parallel to the x;-axis. The angle ¢
represents the orientation of #, in the x,—x, plane and is determined by the AB¢ term ; when
¢ = 0, n, is parallel to the x,-axis.

The principal indices of refraction and the orientation of the index ellipsoid are
functions are position because they depend only upon the optical properties and the
inhomogeneous strain state.

Although up to this point we have made no detailed calculations, it is possible to find
the polarizations of an incident wavefront of light travelling in a direction, w, in the x;—x,
plane. If the index ellipsoid construction of Section 2 is applied to Fig. 3, it is evident that
one wavefront will be polarized in a plane parallel to the crack front and experience an
index of refraction which will be denoted »;. The other semi-axis of the elliptical cross-
section lies in the x,—x, plane. This wavefront will be polarized in a plane perpendicular to
the crack front and experience an index of refraction which will be denoted #, . Henceforth,
the two wavefronts will be called the parallel wavefront and the perpendicular wavefront,
respectively. Both wavefronts are confined to the x,—x, plane because of the plane strain
conditions.

It is also possible to find the functional form of n; and »n, from the geometry of the
index ellipsoid in Fig. 3. The semi-axis denoted by n, changes length if the direction of light
propagation changes (i.e. if @ changes). Therefore » | is a function of both position, x, as
well as the direction of propagation, m. The index of refraction n, is equal to »; and,
therefore, is a function only of position, and not of m.

The functional forms of the indices of refraction are

n; =n (x,m)
ny = ny(x). )
Since n, is a function of both position and direction, the problem of calculating the

path of light in the near crack tip region reduces to that of electromagnetic wave propagation
in an anisotropic, inhomogeneous medium.

4. INDICES OF REFRACTION

As stated in the previous section, the index of refraction of the parallel wavefront is
ny = n;. From Fig. 3 it can be shown that the radius of the ellipse denoted by #, is

ni =

1
(ni+n3) - E(nf —n3)cos [2(w—9)]. (6)

[\ N

Now that we have the precise functional forms for #, and n,, the next step is to obtain
n,, n,, n; and ¢. We assume that a plane strain crack exists in a medium in which the
mechanical and optical properties are isotropic and homogeneous in its undeformed state,
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so that we need consider only the effect of the strain state. Further, we consider only the
contribution from the singular Mode I elastic strain field.

From the known strain field (e.g. Kanninen and Popelar, 1985) and (4), we calculate
the change in relative dielectric impermeability and add to the unstrained isotropic value B

to obtain B in matrix from

B —ABg tan(36/2) AB 0
B= AB, B +ABgtan(36/2) 0 Q)
0 0 B
where
1 .., c08(68/2) sin(8/2) cos(36/2)
ABg = 7(}711—1’12)‘]1’ 2 (6/2) sint6) /
) 1-2v
1

<B’ = B+ ﬁ(Pn +P12)‘hrm”2 C05(6/2)>

(B" = B++/2p12qsr 7 cos(6/2))
and

< __(1_—:.v)(1+v)1_(l
4 = E\/T;

{K; = Mode I stress intensity factor)

, (SI units:m’/2)>

{E = Young’s modulus)

{v = Poisson’s ratio}.

The principal values and principal axes of the index ellipsoid are determined from the
eigenvalues and eigenvectors of B. The eigenvalues, 4, are

Ais = B{14+2/2¢,qir~ "*[cos(8/2) + Bsin(6)]}
(s = Bl1+2./2¢,qr™ 2 cos(6/2)) (8)

where
1
<Cu = §P12n5>
1 2
cyL =Z(P11+P12)n0
<ﬂ= (P11 —P12) >
. 2(1=2v)(p11 +p12)
and

ny =

1_
1

The eigenvector associated with A, is parallel to the x;-axis so it corresponds to the
parallel wavefront. The eigenvectors associated with 4, and 4, then must lie in the x,—x;
plane and contribute to the index of refraction of the perpendicular wavefront.
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To fully characterize the index ellipsoid, it suffices to find the direction in the x;—x,
plane of the eigenvector associated with 4,. It can be shown that this angle (as a function
of position) is

TC
p=7*7 ®

The results of the eigenproblem are summarized in Fig. 4 for 6 = + /2. From (9) it is
evident that the angle ¢ is not an even function. Also from (8), it is evident that for 6 > 0,
A, > A, and that for 8 <0, A, < 4,. Nevertheless, the quadric surface of B maintains the
mirror symmetry about the x,-axis required by the pure Mode I loading.

Four material constants have been introduced. The first, ¢;, depends on mechanical
properties and the Mode I stress intensity factor. Two others ¢, and ¢, depend exclusively
on optical properties. The parameter, f, depends mainly on optical parameters but has a
weak dependence on Poisson’s ratio. As will become clear later, f§ is a measure of the strgin
induced optical anisotropy. If one assumes that in g; the loading parameter X is replaced by
the material property K¢ (i.e. the critical stress intensity factor in Mode 1), ¢; becomes the
material property, ¢ic. The properties (Watson, ef al. 1994 ; Kalthoff, 1993 ; Lawn, 1993) are
summarized in Table 1 for three materials commonly used in crack opening interferometry.

It is important to note that from (8) the change in length of the principal axes of Bis
small for all » » (¢, ¢ic)*. For the materials in Table 1, the change becomes large only when
r is smaller than an atomic spacing. The important length scale is the wavelength of visible
light which in free space is in the range of 0.4 x 107 to 0.7 x 10~° meter.

Therefore, we can use (2) and (8) along with the binomial theorem to calculate the
expressions for the principal indices of refraction.

1o = no{l—/2c,qir~"*[cos(8/2) + fsin(B)]}
ny =n; = n,|l —\ﬁc”qlr‘”2 cos(6/2)]. (10)
Finally, using (6) and (10), neglecting terms of order O(c3¢fr~') and once again

invoking the binomial theorem yields

Table 1. Optical properties for commonly used materials

E K;c , dic
Material (GPa) v n (MPam'®»  p, P2 (m'?) ¢ cL R
Plate Glass 739 0.23 1.52 0.75 0.06 0.16 3.8x10°% 0.18 0.12 —042
PMMA 324 035 1.49 1.20 036 037 84x107° 041 0.40 —0.01

Araldite B 366 039 1.59 0.60 031 039 28x10~° 049 044 —024
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n, = ny(l— \/Eclq;r_ 12 {cos(6/2) — B sin B cos [2(w—@)]}). (11)

Further, we should note that for the case when p,,=p,, =0, ¢, =¢ and
ny = n, = n;. Hence, the index ellipsoid remains spherical and n; = n, . In this case, the light
is not split into two linearly polarized wavefronts. The incident wavefront maintains its
initial polarization state while it traverses the near crack tip region. It does, however, deflect
the same amount as the putative parallel wavefront.

Previous attempts (Fowlkes, 1975 ; Liang and Liechti, 1995) to calculate the deflection
of light at a crack tip did not identify the existence of two possible wavefronts; as such,
only one index of refraction was considered. An ad hoc relationship #» = n,[1 — A] (where
A = g, = dilation) was used in those studies to model the index of refraction of the material.
It is interesting to note that for a plane strain crack tip, since A = ¢, +¢&5,, the second
equation of (10) can be rewritten exactly as n; = no[1 —c A], although ¢, # 1.

S. REVIEW OF GEOMETRICAL OPTICS OF ELECTROMAGNETIC WAVES IN
ANISOTROPIC MEDIA

The equations of geometrical optics or “‘ray tracing” can be derived directly from
Maxwell’s equations by assuming that the wavelength of incident light is small compared
to any characteristic dimension of the problem. The results of such an analysis are stated
in this section. Readers interested in the detailed derivation can consult Kravtsov and Orlov
(1990).

We begin with Maxwell’s equations and the constitutive relations (1) and assume the
vector quantities B, H, D and E vary sinusoidally with time. The wavefront is not con-
strained to be planar. Next, by expanding the vector quantities in a series in terms of powers
of wavelength, it can be shown that, to first order, the wavefront propagates as if it were
locally a plane wave. Hence, the result |p| = # from Section 2 holds for each of the two
wavefronts. This result, known as the eikonal equation is valid for wave propagation in
anisotropic, inhomogeneous media and can be written as

(P12 +(p2)* +(p3)’ =n*(x,p) (12)

where p,, p, and p; are the components of the slowness vector in Cartesian coordinates.
Courant and Hibert (1966) discuss the general solution of the family of 1st order
partial differential equations of which the eikonal equation is a member. When the general
theory is applied to (12), the eikonal equation can be rewritten in terms of the following
characteristic system of first order ordinary differential equations (Kravtsov and Orlov,

1990)
A% _ osa|Bi_On
gy~ cosa | o,
dp; on
o cosocaxi (13)
where
on on}"1?
> = - . 14
cosa [1 + S 5pi] (14)

The physical interpretation of the variables in the characteristic equations is as follows :
x corresponds, parametrically, to the path of the light ray
p = slowness vector, in direction of wave normal
s = path length along the light ray

o = angle between wavefront and light ray.
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Fig. 5. Vector quantities relative to wavefront in a anisotropic medium.

Since » is a homogeneous function of degree zero in p

on
=0
rs, (13)
which implies that the vectors p;, and dn/dp; are orthogonal. As illustrated in Fig. 5, we
define the vector

g; = —non/op,. (16)

The obvious physical interpretation of q is that p+q = S, since « is the angle between
the slowness vector, p, and the ray direction given by the Poynting vector, S.

In the next section, we will calculate the components of dn/dp, for the special case of a
wavefront of light for which p is constrained to lie within a plane.

Since the eikonal equation (12) relates the slowness vector, p, to the index of refraction
it is evident that the path of the wavefront is determined by the index of refraction. The
characteristic equations go one step further. They combine the effects of both the optical
anisotropy and the change of index of refraction to calculate the path of the light ray.

6. LIGHT PROPAGATION IN NEAR CRACK TIP REGION OF A MODE I CRACK

With this background, the mathematical problem of calculating the paths of the light
rays in the near crack tip region can be formulated. Since the index of refraction for the
parallel wavefront is a special case of the index of refraction for the perpendicular wavefront
(i.e. by setting 8 = 0), it suffices to calculate the path of the light ray of the perpendicular
wavefront. Figure 6 shows the geometry being considered. Initially, the unit normal vector,
m, is directed in the positive x,-direction. We introduce a new variable, £, which corresponds
to the deflection of light from the nominal straight line path. A positive value of ¢ indicates
that the light deflects in the negative x,-direction.

The initial position, x}, is arbitrary. However in this analysis we will dwell on the

Xy
crack tip at origin

crack ﬂanks\ / .

[ — — — — ——

/R
deflection of \) —

light path
I

Fig. 6. Geometry of mathematical formulation.

J/ path of light ray
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special case of x} = 0, for which an analytical solution can be obtained. Numerical solutions
for other initial positions are discussed later. The assumptions used to derive the analytical
solution are:

1. incident wavefront of light nominally follows path § = —x/2

2. derivatives of index of refraction are always calculated on line § = —x/2
3. direction of wavefront normal is always w = /2

4. small anisotropy (i.e. c.qyr~'"? « 1).

Implicit in Assumption 2 is that the analytical solution is valid only for £(r) « r. Also,
since we have assumed a state of plane strain, the wavefront of incident light is constrained
to propagate in the x,—x, plane with m; = 0.

Referring to Fig. 3, the components of the vector on, /0p; are calculated by using that
fact that n, is a homogeneous function of degree zero in p, so that we can write

on, 0n, dw

o~ ew op, (n
where
_y (P2
® = tan~"! (—) (18)
V4
The in-plane components of the vector dn, /0p; then become
Ony _ —mz On,
op,  n, o
On, _m ony 19)

op, n. tw’

Using Assumption 4, the binomial theorem and the Taylor expansion for cosine, (14)
can be rewritten for the case of ““small anisotropy” as

1 én,
= ;ZEU— (20)

on,
ap

o~

The characteristic system of differential eqns (13) can then be combined and rearranged
to obtain

dx, (TonNdx,  10om, 1 0m  prde
ds ~ n, 0x, anlaxz n, ds

de \no ds

dx, (1 anL)dxz 1 on, 1 0n, p_ldjf. 1)

ds? n, os
We now formulate the equations governing the behavior of light subject to the assump-
tions discussed above by combining (11) with (20) and (21). The quantities specific to this

problem on the line 6 = —n/2 with nominal direction of wavefront propagation w = /2
are

n,=ng[1—cq(1-pr'?

on | )
7o =~ 3 (1=3f)r "
1
on 1
<a£ = - EnochI(l _B)r“}/2>

(= =2c,q:pr™"?. (22)
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The resulting equations are linearized by replacing n, with n, whenever n, occurs in a
denominator and by assuming that p, ~ n, for a « 1. Finally substituting ¢ = —x, and
r = —sinto the first equation of (21) yields the governing equation for the deflection of the
light as it approaches a crack tip

2

d<¢ |1 Ld& 1 ,
it [qul(l —ﬂ)]r-“ &= real—pr - pa-pr @3

with initial conditions

Lr=re) =05
a¢
<dr

The initial radius, ry, is the largest radius at which the singular term in the strain field
dominates (i.e. the radius of the K-field). As such, r,, is a function of the geometry of a
specimen. The initial condition for the slope is determined by the angle o at r = r,.

The equation governing the light path in the x,-direction can be obtained in a similar
manner. It is satisfied to the order O(c} giry '), so (23) and (24) suffice to calculate the light
path.

If the equations are made non-dimensional by scaling r with r, and £ with g7, it can be
shown that the second terms of both sides (23) are negligible when compared with the first
terms of both sides of the equation. Then (23) reduces to

= —2c.qifry ”2>- (24)
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The rate of deflection and the total deflection of the light ray for the perpendicular
wavefront subject to initial conditions (24) can then be found by simple integration. The
results (expressed in dimensional variables) at any radius 0 < r < ry are

%f = —2C‘quﬂr—”2_(l "3/3)%%"0#”2 [(L)\ / —I:I (26)

ro
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coqir Yo Fo

In considering the physical origin of the terms in the solutions (26) and (27), we must
keep in mind that two processes are at work to affect the path of the light ray. The first is
the strain induced optical anisotropy, characterized by f, which causes the light ray to
propagate in a direction that is not normal to the wavefront. The second is the inhomo-
geneity of the index of refraction, characterized by ¢, ¢,y ~'?, which causes the wavefront
itself to change direction.

We note that the first term on the right hand side of (26) is identical to the expression
for « in (22). It is evident that this term arises solely from the effects of anisotropy and
represents the rate of light deflection that would occur if the wavefront were to remain
plane throughout the course of its journey toward the crack tip (i.e. if the index of refraction
were homogeneous). However, it is impossible to completely separate the effects of ani-
sotropy and inhomogeneity because, as the expression for « in (22) shows, the degree of
anisotropy is a function of position. That is, the anisotropy itself is inhomogeneous.

The second term on the right hand side of (26) arises from the effects of the inhomo-
geneous index of refraction which causes an initially plane wave to become non-planar.
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Thus, the direction of wavefront propagation changes. The numerical factor of (1 —3p) is
due to the coupling between the inhomogeneity and the anisotropy.

The effect of the inhomogeneity can be seen most clearly in the case of the parallel
wavefront where the index of refraction is isotropic. The rate of deflection and the total
deflection of the light ray of the parallel wavefront are found by setting f = 0 and sub-
stituting ¢, for ¢, in (26) and (27).

We now have the solution for the path of the light ray of both the parallel and
perpendicular wavefronts. It is evident that the two light rays deflect different amounts.
The total deflection of each ray when it reaches the crack flanks is given as

ftumal =Gr=0)= Cu‘]l”(‘)‘/z

o9 = &, (r=0) = c.qu(1+H)ri>. (28)

At this point we should recall that solutions (26) through (28) were obtained by
neglecting two terms in the governing eqn (23). We must ask ourselves whether the neglected
terms are important, considering the fact that, even though the expression for deflection in
(27) remains bounded, the expression for the slope of deflection in (26) is singular. Hence,
in Appendix A, we calculate the exact solution for the deflection and the slope of defiection
of the light taking into account all the terms of (23).

The exact expression shows that as r — 0 the deflection of the light ray diverges as
& oc exp [c1gi(1— B)r~'?]. This would seem to indicate that the approximate solution (27)
is not valid. However, an asymptotic approximation of the singularity in the exact solution
for ¢ as r — 0 shows that ¢ remains finite for all r > (¢, g,(1 — f))* Using Table 1, we see
that the deflection for a typical material will remain finite for any r > 10~!° m. Since this
dimension is several orders of magnitude smaller than the wavelength of the incident light,
we conclude that (27) is valid on physical grounds.

Similarly from the exact analysis, we note that the approximate solution for the slope
of deflection in (26) is valid as » — 0 as long as r > (¢, q,(1 — §))°>. Using Table 1, the slope
of the light rays in a typical material at a radius equal to the wavelength of the incident
light is of the order O(107?). This small angular deflection justifies Assumption 3. Finally,
Appendix A also shows that Assumption 2 is valid for r > 0.017, and that light deflection
which occurs at smaller radii does not significantly affect the solution.

The analytical results are valid only for initial conditions x} = 0. In order to calculate
the path of light rays with other initial conditions, we numerically solved (21) subject to
(24) using the fourth order Runge-Kutta method with variable step size. Plots of the
analytical and numerical results are shown in Fig. 7, for the parallel wavefront, and Fig. 8,
for the perpendicular wavefront for the choice f = 0.25. The figures can be interpreted as
being the actual path the light rays follow as they approach the crack which has its tip at
x, = 0 and its flanks coinciding with the negative x,-axis. Each line corresponds to a light
ray approaching the crack from the positive x,-direction. The leftmost line on each figure
is the ray that corresponds to the analytical solution.

As is evident in Fig. 7 and Fig. 8, the light rays associated with the perpendicular
wavefront have a non-zero initial slope which is consistent with wave propagation in
anisotropic media. The light rays associated with the parallel wavefront have an initial
slope of zero which is consistent with wave propagation in isotropic media.

Figure 9 plots the total deflection for light rays which approach the crack with normal
incidence but from initial positions either in front of or behind the crack tip.

7. IMPLICATIONS FOR CRACK OPENING INTERFEROMETRY

The light associated with each wavefront reflects from both crack flanks and interferes
to form a set of fringes. Since the wavefronts are polarized in mutually orthogonal direc-
tions, each wavefront will interfere only with itself ; thus two sets of interference fringes are
generated.
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The intensity of an interference fringe at a point depends upon the local normal crack
opening displacement. Assuming that both wavefronts initially have the same intensity, the
intensity of each sets of fringes will be the same at each point. Therefore, the two sets of
fringes coincide and appear identical to an observer situated inside the crack that is
incapable of distinguishing polarization (i.e. photographic film, CCD arrays, retinas, etc).
The resulting “single” set of interference fringes is localized in the region of the crack flank
closest to the incident light source and is shown symbolically in Figure 1 as a set of small
circles.

In crack tip interferometry, the observer is usually in the same location as the light
source and must look at the fringes through the transparent material. An image of the
fringes is transmitted to the observer along the same path as the incident light. Therefore,
two images of the single set of interference fringes are transmitted back to the observer.
The observer can distinguish between the two images by looking through a properly oriented
polarizer.
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An observer would record two sets if the difference between ¢ and £ in (28) is
sufficiently large. This could lead to erroneous measurements of normal crack opening
displacement if the observer is not aware that two sets of fringes exist.

Also, this phenomenon could be exploited to directly obtain the value of the stress
intensity factor, K, from (28) by simply measuring &°* — &9, In addition, if the light
deflection due to a Mode II loading were known, one could obtain the values of both K;
and Kj; from crack opening interferometry. In that case, it would be necessary to measure
K; from the normal crack opening displacement and to infer K from an expression
analogous to (28) which would account for both Mode I and Mode II loading.

If one were to attempt such rneasurements, it would be necessary to estimate the value
of r,, probably with the finite element method. We can evaluate the feasibility of this
technique by calculating the difference in deflection between the two rays for the materials
listed in Table 1. If we arbitrarily assume that the radius of the K-field is r, = 0.01 m, Table
2 shows the total light deflections as well as the relative deflections.

Under the assumptions made, the absolute light deflection for some materials (e.g.
PMMA) is large enough to be measured. However, the difference in the light deflection is
too small to be measured for all the materials considered. In fact, the difference in light
deflection would have to be at least a factor of 15 times larger to be experimentally
significant. It seems unlikely that this method could be used to make meaningful measure-
ments.

Finally, in those materials for which the absolute light deflection is large enough to be
measured, the crack tip will change its apparent position relative to the observer. Similarly,
the interference fringes will change their apparent positions by an amount that is a function
of distance from the crack tip. This could result in an apparent distortion (i.e. stretching
or compressing) of the interference fringes which would lead to errors in extracting the
stress intensity factor. Figure 9 shows that the fringes within the range r < 102, all shift
approximately the same amount, so that this effect need not be considered.

Table 2. Deflection of light for commonly used materials

Guml étful é‘tozal —_ f!fm
Material (m) (m) (m)
Plate Glass 7x1078 3x1078 4x10-8
PMMA 34x10°¢ 3.3x10°¢ 1x10°7
Araldite B 1.4x107¢ 9% 107 5% 1077
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8. RESULTS AND CONCLUSIONS

The behavior of light at a plane strain crack tip is surprisingly complex. An incident
light wavefront is split into two linearly polarized light wavefronts: one polarized in a plane
parallel to the crack front; the other polarized in a plane perpendicular to the crack front.
Each wavefront experiences a different index of refraction, and hence, the associated light
rays deflect different amounts.

The exact relationship between index of refraction and position for a Mode I crack tip
1s derived for both wavefronts. The problem reduces to one of electromagnetic wave
propagation in an anisotropic, inhomogeneous medium.

The groups of mechanical and optical properties relevant to light deflection in crack
tip interferometry are identified and tabulated for cornmonly used materials.

The light path for both light rays is calculated analytically for the special case of a
light wavefront that would, in an unloaded state, approach the crack in the direction
perpendicular to the crack flanks and strike the crack tip. Hence, an expression for the total
light deflection of both light paths at the crack tip is obtained in terms of the previously
identified material parameters. In addition, the system of equations is solved numerically
to investigate the behavior of light wavefronts with other initial positions.

The results show that for some materials and specimen geometries, the absolute
deflection of each light ray is large enough to be measured. But the relative deflection (i.e.
the difference in deflection between the two light rays) is too small to be measured. The
main effect that this phenomenon has on crack opening interferometry is to cause a shift
in the apparent position of the crack tip. It is shown that this shift will not affect the
interpretation of the interference fringes in terms of crack opening displacement.

These results are also of interest because they are an analytical solution to Maxwell’s
equations in an anisotropic, inhomogeneous medium.

This analysis did not account for variations in the indices of refraction due to tem-
perature changes. This may be important if the fracture process occurs dynamically or if
large plastic zones are formed.
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APPENDIX A: EXACT EXPRESSIONS FOR DEFLECTION OF LIGHT RAY

There is no € term in (23), so the equation immediately reduces to a first order ordinary differential equation
by defining the slope as
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dg
§ = a . (Al)
The resulting equation can be directly integrated by identifying the integrating factor
u(r) = exp[~c gi(1~fr "2 (A2)
Thereupon, (23) can be written as
d 1 —3/2 2 -2
G0N = p0)| e =Fr=" —(c.q) B —Fyr 2 |. (A3)

The exact solutions of the rate of deflection and the total deflection at any radius 0 < r < r, subject to initial

conditions (24) are
1 \dE P\ (=3p) Ty
<clq1r5"'z>d’ i (a> i v {] —ew [(7(;) - 1]} (B4
and

rar =G o )]

F(1-3p) {1 -(i) " expy [<i)¥ T 1]}+(1—3ﬁ)yexp(—y)1 (AS)
Fo Yo,

where

and

y = cugirg (1= f).

The deflection formally diverges exponentially with decreasing radius (i.e. with singularity
& ocexp [coqi(1 —B)r~'). In order to investigate the behavior of the singularity in (A.5), we integrate (A.4) by
parts to obtain an asymptotic approximation for & as r — 0. It is the form

o GWES
R e (A.6)
P .

where

()"

A conservative criterion which ensures a finite deflection is yx < 1. This corresponds to

rL > [eqirs (1= BT (A7)
0

Using representative material properties from Table 1, it is evident that the exact expressions predict that the
deflection and slope diverge on a scale that is less than that of an atomic spacing. Indeed, when the exact solution
(A.4) is evaluated numerically for 7 = O(10~°), the deflection diverges at r/r, = O(107'2). Since the wavelength
of light is several orders of magnitude greater than this length, the singular solution does not apply. Therefore,
the approximate expressions for the rate of deflection (26) and for the path of the light ray in (27) are physically
valid.

We also estimate the slope of the light ray as it approaches the crack tip. It can be shown from (A.4) that if
(A.7) holds, the slope is d&/dr oc —c,g,(1—p)r~"% As an example, the slope of the light ray for PMMA at a
radius equal to the wavelength of the incident light is of the order O(10~%).

As a result of Assumption 2 in Section 6, the solution is only valid for &(r) « r. If the cut-off value for validity
is chosen, arbitrarily, as &(r)/r = 1072, typical values from Table 1 indicate that the domain of validity is r > 0.01r,.
At smaller radii, the expressions analogous to those in (22) would be augmented with trigonometric functions in
f that are of order unity. Therefore, the overall order of magnitude of the terms would still be determined by the
radius. Hence, the final deflection will be of the same order of magnitude calculated in the above solutions. This
finding is reinforced by the numerical calculations presented in Fig. 9.



